Cтраница 1
Норма вектора иногда называется его длиной. [1]
Норма вектора А2 ( А0) 2 - А2 может быть положительной, отрицательной или нулем. [2]
Норма вектора x i (1.6.4) носит название евклидовой нормы. [3]
Норма вектора x z (6.5) называется часто октаэдрической нормой. [4]
Норма вектора является обобщением понятия модуля числа. Норма вектора позволяет сравнивать длины векторов, определять расстояния между ними, выполнять оценки, формировать критерии. [5]
Нормы вектора могут задаваться различными способами. [6]
Норма вектора - j равна единице, такие векторы называют нормированными. Расстояние между векторами х, у совпадает с нормой разности этих векторов. [7]
Нормы векторов и матриц могут вводиться различными способами. [8]
Норму вектора состояния удобно выбрать равной единице; его фазовый множитель произволен. [9]
Единичная окружность с центром в начале координат 0 ( р (, 0 1 для метрик pi, р2 и РОД в вещественной плоскости. [10] |
Нормой вектора ( или его длиной) называется расстояние от точки до начала координат. [11]
Если норма вектора равна нулю, то такой вектор называется нулевым, а если единице, то единичным или нормированным. Нулевой вектор не имеет направления. [12]
Здесь норма вектора невязки должна быть меньше заданного допустимого отклонения Е, величина которого зависит от A IL и машинной точности. [13]
Cxcsfa потоков в адсорбционном аппарате. [14] |
Вычисляется норма вектора промежуточного решения и сравнивается с нормой вектора-решения предыдущей итерации. В противном случае выполняется следующая итерация. [15]