Прогнозирование - остаточный ресурс - Большая Энциклопедия Нефти и Газа, статья, страница 1
Почему-то в каждой несчастной семье один всегда извращенец, а другой - дура. Законы Мерфи (еще...)

Прогнозирование - остаточный ресурс

Cтраница 1


Прогнозирование остаточного ресурса при циклических нагрузках в условиях ползучести проводится, если аппарат работает при температурах, вызывающих ползучесть, и при этом нагружается повторными тепловыми или механическими усилиями. В этом случае элементы аппарата должны быть рассчитаны на длительную циклическую прочность.  [1]

Прогнозирование остаточного ресурса ( умение предсказывать возможность надежной работы, без отказов) играет большую роль в практике эксплуатации машин. Применяют следующие основные методы прогнозирования: инструментальный - по среднестатистическому изменению параметров и эвристический. По первому методу состояние прогнозируют на основе изменения среднестатистических значений параметров для тех или иных агрегатов, или элементов. Второй метод основан на непосредственном измерении того или иного параметра в прошлом или в настоящее время.  [2]

Прогнозирование остаточного ресурса осуществляется путем проведения периодических обследований трубопроводов, измерения глубин проникновения коррозии на его стенках, статистической обработки результатов измерений и последующего расчета остаточного, среднего и гарантированного ресурсов.  [3]

4 Нормированные зависимости. [4]

Прогнозирование остаточного ресурса изделий из ПКМ является одной из важнейших проблем самолетостроения. В ПКМ такие микроповреждения - это разрывы армирующих волокон, трещины в полимерной матрице и зоны нарушения соединения волокон с матрицей.  [5]

Прогнозирование остаточного ресурса рабочих клапанов по полученным данным невозможно.  [6]

Поскольку прогнозирование остаточного ресурса относится к конкретному, индивидуальному объекту, а прогноз неизбежно содержит элементы вероятностного характера, то возникает вопрос об истолковании вероятностных выводов применительно к индивидуальным объектам и индивидуальным ситуациям. Современная теория вероятностей и математическая статистика традиционно отдают предпочтение статистической интерпретации вероятности как единственному толкованию, имеющему объективный смысл. Аналогичное толкование дают и в системной теории надежности, развитой в первую очередь применительно к массовой продукции, работающей в статистически однородных условиях. Применительно к уникальным объектам приходится использовать менее популярное понятие индивидуальной, субъективной или байесовской вероятности как меры уверенности в истинности суждения. Теория статистических решений почти целиком основана на байесовском истолковании вероятности, причем выводы индивидуального характера базируются на статистической информации, полученной из анализа представительных выборок. Применительно к прогнозированию индивидуальных показателей надежности роль статистической информации играют данные о нагрузках, свойствах материалов, соединений и деталей, причем эти данные относятся либо к массовым явлениям, либо к эргодическим процессам. Понятия индивидуальных показателей надежности, в конечном счете, представляют собой математическую формализацию интуитивных представлений, которые использует группа экспертов при обсуждении вопроса о возможности дальнейшей эксплуатации конкретного технического объекта.  [7]

Поскольку прогнозирование остаточного ресурса относится к конкретному, индивидуальному объекту, а прогноз неизбежно содержит элементы вероятностного характера, то возникает вопрос об истолковании вероятностных выводов применительно к индивидуальным объектам и индивидуальным ситуациям. Современная теория вероятностей и математическая статистика традиционно отдают предпочтение статистической интерпретации вероятности как единственному толкованию, имеющему объективный смысл. Аналогичное толкование дают и в системной теории надежности, развитой в первую очередь применительно к массовой продукции, работающей в статистически однородных условиях. Применительно к уникальным объектам приходится использовать менее популярное понятие индивидуальной, субъективной или байесовской вероятности как меры уверенности в истинности суждения. Теория статистических решений почти целиком основана на байесовском истолковании вероятности, причем выводы индивидуального характера базируются на статистической информации, полученной из анализа представительных выборок. Применительно к прогнозированию индивидуальных показателей надежности роль статистической информации играют данные о нагрузках, свойствах материалов, соединений и деталей, причем эти данные относятся либо к массовым явлениям, либо к эргодическим процессам. Понятия индивидуальных показателей надежности в конечном счете представляют собой математическую формализацию интуитивных представлений, которые использует группа экспертов при обсуждении вопроса о возможности дальнейшей эксплуатации конкретного технического объекта.  [8]

Производит прогнозирование остаточного ресурса по контролируемым параметрам.  [9]

Поскольку прогнозирование остаточного ресурса относится к конкретному, индивидуальному объекту, а прогноз неизбежно содержит элементы вероятностного характера, то возникает вопрос об истолковании вероятностных выводов применительно к индивидуальным объектам и индивидуальным ситуациям. Современная теория вероятностей и математическая статистика традиционно отдают предпочтение статистической интерпретации вероятности как единственному толкованию, имеющему объективный смысл. Аналогичное толкование дают и в системной теории надежности, развитой в первую очередь применительно к массовой продукции, работающей в статистически однородных условиях. Применительно к уникальным объектам приходится использовать менее популярное понятие индивидуальной, субъективной или байесовской вероятности как меры уверенности в истинности суждения. Теория статистических решений почти целиком основана на байесовском истолковании вероятности, причем выводы индивидуального характера базируются на статистической информации, полученной из анализа представительных выборок. Применительно к прогнозированию индивидуальных показателей надежности роль статистической информации играют данные о нагрузках, свойствах материалов, соединений и деталей, причем эти данные относятся либо к массовым явлениям, либо к эргодическим процессам. Понятия индивидуальных показателей надежности в конечном счете представляют собой математическую формализацию интуитивных представлений, которые использует группа экспертов при обсуждении вопроса о возможности дальнейшей эксплуатации конкретного технического объекта.  [10]

Поскольку прогнозирование остаточного ресурса относится к конкретному, индивидуальному объекту, а гфсмноз неизбежно содержит элементы вероятностного характера, то возника гг вопрос об истолковании вероятностных выводов применительно к ищ ивидуальным объектам и индивидуальным ситуациям. Современная тео эия вероятностей и математическая статистика традиционно отдают предпочтение статистической интерпретации вероятности как единственном толкованию, имеющему объективный смысл. Аналогичное толкование / ают и в системной теории надежности, развитой в первую очередь прим мнительно к массовой продукции, работающей в статистически однороди гх условиях. Применительно к уникальным объектам приходится использот ать менее популярное понятие индивидуальной, субъективной или байессвской вероятности как меры уверенности в истинности суждения. Теорш статистических решений почти целиком основана на байесовском истолковании вероятности, причем выводы индивидуального характера базирук ггся на статистической информации, полученной из анализа представител эных выборок. Применительно к прогнозированию индивидуальных показателей надежности роль статистической информации играют данные о на рузках, свойствах материалов, соединений и деталей, причем эти данные тносятся либо к массовым явлениям, либо к эргодическим процессам.  [11]

Для прогнозирования остаточного ресурса узла уплотнения этого параметра явно не достаточно.  [12]

Вопрос прогнозирования остаточного ресурса является весьма актуальным, так как многие агрегаты отработали расчетный срок, и одновременная замена большого количества поверхностей невозможна и экономически нецелесообразна, так как не все поверхности исчерпали свой физический ресурс.  [13]

При прогнозировании остаточного ресурса трубопровода по изменению текущей толщины стенки t и при постоянном значении допускаемого напряжения единственной характеристикой технического состояния является износ стенки. Опустим в знаменателе формулы ( 43) значение вычитаемого, что приводит к погрешности, идущей в запас прочности.  [14]

При прогнозировании остаточного ресурса трубопровода возможна ситуация, когда данные об износе его элементов имеются не в полном объеме. Но имеются данные по отказам и информация о величине общего ( среднего) износа на момент диагностирования.  [15]



Страницы:      1    2    3    4