Cтраница 2
Треугольной матрицей называется матрица, у которой все элементы по одну сторону от главной или побочной диагонали равны нулю. Чему равен определитель треугольной матрицы. [16]
Треугольной матрицей называется матрица, у которой все элементы, стоящие по одну сторону от главной или побочной диагонали, равны нулю. Чему равен определитель треугольной матрицы. [17]
Операции по выполнению прямого хода метода Гаусса в соответствии с теоремами линейной алгебры не изменяют величины определителя. Очевидно, что определитель треугольной матрицы равен произведению ее диагональных элементов. [18]
Это интуитивное представление находит в некоторых случаях точное количественное выражение. Например, мы знаем ( см. ( 6) из § 1), что определитель треугольной матрицы ( верхней или нижней) равен произведению элементов, стоящих на главной диагонали. [19]
Треугольные матрицы имеют много замечательных свойств, в силу которых они широко используются в построении самых различных методов решения задач алгебры. Так, например, для квадратных матриц сумма и произведение одноименных треугольных матриц есть треугольная матрица того же наименования, определитель треугольной матрицы равен произведению диагональных элементов, собственные значения треугольной матрицы совпадают с ее диагональными элементами, треугольная матрица легко обращается и обратная к ней также будет треугольной. [20]
Ранее уже отмечалось, что непосредственное нахождение определителя требует большого объема вычислений. Вместе с тем легко вычисляется определитель треугольной матрицы: он равен произведению ее диагональных элементов. [21]
Чем больше нулей среди элементов матрицы А и чем лучше они расположены, тем легче вычислять определитель det А. Это интуитивное представление находит в некоторых случаях точное количественное вьфажение. Например, мы знаем ( см. ( 6) из § 1), что определитель треугольной матрицы ( верхней или нижней) равен произведению элементов, стоящих на главной диагонали. [22]
Например, умножение определителя на скаляр эквивалентно умножению элементов любой строки или любого столбца матрицы на этот скаляр. Из уравнения ( 40) и из того, что разложение применимо к алгебраическому дополнению так же, как к определителю, следует, что определитель треугольной матрицы равен произведению ее диагональных элементов. [23]
Эта возможность вытекает из трех основных свойств определителей. Прибавление кратного одной строки к другой не меняет определителя. Перестановка двух строк изменяет знак определителя. Определитель треугольной матрицы равен попросту произведению ее диагональных элементов. DECOMP использует последнюю компоненту вектора ведущих элементов, чтобы поместить туда значение 1, если было произведено четное число перестановок, и значение - 1, если нечетное. Чтобы получить определитель, это значение нужно умножить на произведение диагональных элементов выходной матрицы. [24]